Oxidative Addition Reactions of an Iridium Nitrosyl Compound

By C. A. REED and W. R. ROPER*

(Department of Chemistry, University of Auckland, Auckland, New Zealand)

The diverse substitution and oxidative addition reactions of d^{10} zerovalent derivatives of platinum, palladium, and nickel1 have prompted our investigation of the electronically similar d^{10} compound $Ir(NO)(PPh_3)_3$. We report both an improved preparation of (I) and its oxidative addition with acids, halogens, and alkyl halides.

the geometry is depicted as a tetragonal pyramid with trans-phosphines and a bent nitrosyl group at the apex as has been reported⁵ for the isoelectronic d⁸ complex [IrCl(CO)(NO)L₂]+, vN-O 1680 cm.-1 Good spectroscopic evidence supporting this geometry is found in the far-i.r. spectrum of (IV), which shows only one iridium-chlorine

Some properties of iridium nitrosyl compounds

	Compound(a)	Colour	I.r. $data(b)$ (cm. ⁻¹)
(I)	$Ir(NO)L_3$	orange	νN-O 1600
(II)	$Ir(CH_3)I(NO)L_2$	brown	νN-O 1525, δCH ₃ 1220
(III)	$IrI_2(NO)L_2$	red-brown	νN-O 1560
(IV)	$IrCl_2(NO(L_2))$	light brown	νN-O 1560, νIr-Cl 325
(V)	$[Ir(H_2O)(NO)L_2][ClO_4]_2(c)$	orange	νN-O 1855, νO-H 3525
	$[IrH(NO)L_3][ClO_4](d)$	yellow-green	νN-O 1715, νIr-H 2050, δIr-H 820
(VII)	IrHCl(NO)L ₂	red-brown	νN-O 1550, νIr-Cl 290, νIr-H 2070
(VIII)	$Ir(CH_3)Cl(NO)L_2$	brown	νN-O 1525, νIr-Cl 285, δCH ₃ 1220

(a) All compounds reported give good elemental analyses; (b) Recorded as KBr discs, petroleum jelly mulls below 400 cm.-1; (c) $\Lambda_{\rm M} = 37.5$ ohm⁻¹cm.²mol⁻¹, nitrobenzene, 25° (10⁻³M); (d) $\Lambda_{\rm M} = 25.3$ ohm⁻¹cm.²mol⁻¹, nitrobenzene, 25° (10⁻³M).

Reaction of N-methyl-N-nitroso-p-toluenesulphonamide with $IrH(CO)L_3$ (L = PPh₃) gives Ir(NO)(CO)L which upon being heated under reflux in an excess of PPh3 is converted into (I) (93%). Compound (I) with methyl iodide at 85° gives Ir(CH₃)I(NO)L₂ (II), remarkable for its low nitrosyl-stretching frequency (Table), and with I_2 to form $IrI_2(NO)L_2$ (III), and with HCl to form $IrCl_2(NO)L_2$ (IV). With an excess of perchloric acid, (I) is converted into the orange diperchlorate [Ir(H₂O)(NO)L₃][ClO₄]₂ (V). Intermediate in its formation is the yellow-green hydride complex [IrH(NO)L₃][ClO₄] (VI). This protonation is reversible; treatment with KOH yields (I). Such reactions are analogous to those of zerovalent platinum compounds with acids.3 With LiCl in ethanol, (VI) forms the neutral hydride IrHCl(NO)L₂ (VII), a probable intermediate in the formation of (IV) from HCl.

It has been suggested4 that the low nitrosyl-stretching frequencies of (III) and (IV) (Table) might indicate bridging nitrosyl groups. However, (II) and (III) are found to be monomeric in benzene (osmometer) and

stretching frequency. With LiCl, (II) is converted into Ir(Me)Cl(NO)L₂ (VIII). This lability of the halide group suggests that operation of some kinds of trans effect, as does steady decrease in Ir-Cl for compounds, (IV), VII), and (VIII).

NO L IT I MeI NO X2.HX NO X2.HX

OH THE HOLO A

L = PPh3 ,
$$X = CI, Br, I$$

(Received, December 30th, 1968; Com. 1792.)

R. Ugo, Co-ordination Chem. Rev., 1968, 3, 319.
 M. Angoletta, Gazzetta, 1963, 93, 1591.

F. Cariati, R. Ugo, and F. Bonati, Inorg. Chem., 1966, 5, 1128.
 W. P. Griffith, "The Chemistry of the Rarer Platinum Metals," Interscience, London, 1967, p. 270.
 D. J. Hodgson, N. C. Payne, J. A. McGinnety, R. G. Pearson, and J. A. Ibers, J. Amer. Chem. Soc., 1968, 93, 4486.